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An extended version of the Bethe theory of low-energy electron diffraction is presented and successfully
applied to a computation of diffracted beam intensity as a function of wavelength of the incident electron.
The results show consistent behavior with respect to parameter variation and are in reasonable agreement

with measured beam intensities.

I. INTRODUCTION

T is generally agreed that, up to the present time,
the use of low-energy electron diffraction (LEED)
as a tool for surface-structure analysis has met with
only partial success, due to the lack of a sufficiently
accurate, numerically tractable, theoretical model.
Thus, it has not been possible to exploit fully the rapidly
accumulating experimental information, especially beam
intensity measurements.

Recently, a number of theoretical treatments of
LEED have been proposed. They may be divided into
two categories, i.e., kinematical and dynamical the-
ories. In the former, as in x-ray diffraction theory, mul-
tiple scattering is neglected, whereas in the latter, this
phenomenon is treated more or less rigorously. Several
authors have shown,'~® however, that multiple scatter-
ing is a vitally important process in LEED and that
only the dynamical theories may be able to explain in
detail the dependence of the beam intensities on elec-
tron energy.

Dynamical effects in LEED have been investigated
by a number of authors,®*® using various models,
methods, and approximations. Our method?® is based on
the Bethe theory!® which assumes that the incident and
the diffracted electron beams are plane waves and that
the crystal can be represented by a three-dimensional
periodic potential, cut off abruptly at a plane surface.

The present paper consists of three parts: first, a brief
review of the theory (Secs. II-IV), then a discussion of
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the results of beam intensity calculations for an fcc
lattice! (Sec. V), and finally, a comparison with recent
experimental results'? (Sec. VI).

II. MODEL

Let us consider a perfect crystal, represented by a
complex periodic potential

W)= > erdumnry, , . (2<0)
l,m,n (1)

W(r)=0, (z>0)

where by, is the reciprocal lattice vector [e.g., in a
cubic lattice, bym,»= (1/a)(l,m,n), a being the lattice
constant in real space]. *

The real part of W (r) gives rise to elastic scattering,
whereas the imaginary part causes electron ‘“‘absorp-
tion” and, thus, phenomenologically accounts for in-
elastic processes.

The wave function in the vacuum, ®(r), z>0, is
assumed to be the sum of an incident plane wave X7,
whose amplitude is equal to unity, and all possible
diffracted plane waves &, e im-1,

It can be shown!? that the propagation vectors of the
diffracted beams are determined by

hl,mnzKH+27rbl,m; hl,m1= + (KL—hl'muz)”Za (2)

where the subscripts || and L indicate vector compo-
nents parallel and perpendicular to the crystal surface,
respectively, and by,m="b7,m,x,-

Thus, the wave function in the vacuum is written as

d)(r)=e“{~f+2 @l,meihl"”'r. (3)
I,m

III. PROBLEM

The mathematical problem may now be stated as
follows: The one-electron Schrodinger equation V%
+ (K?4-W)y=0, with K2 and W prescribed, is to be
solved in the half-space <0 (i.e., within the crystal),

1 E. C. Snow, Phys. Rev. 158, 683 (1967).
2 S. M. Bedair (private communication).
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subject to the following boundary conditions:

(1) |¢|? finite for <0;

(2) limas o |[¢|*=0;

(3) continuity of the wave function and its derivative
with respect to the surface normal, at the surface, i.e.,
Y=3® and dy/dz=0%/9dz at 2=0, where & is given by
Eq. (3).

The unknowns are the intensities of the diffracted
beams, i.e., the amplitudes ®; ., and the wave function
in the crystal, ¢ (r).

IV. METHOD OF SOLUTION
A. Bethe Equations

We assume the ansatz for the wave function used by

Bethe,!0
Y= X

l,m,n,s

eHLmmS Ty ns 4)

where Ki,m,n,s=Kiu48+27b1,m,4, s= (0,0,5), and s is a
complex number. Note that the summation over s does
not imply a double sum over its real and imaginary
parts. These two quantities cannot be chosen indepen-
dently because s must be a solution of the-eigenvalue
equation (5), below.

Combining (4) with the Schrodinger equation yields
the well-known Bethe equation,

\bl,m,n,s(K2_kl.m,n,s2)
+ Z 'wl’,m’,n"pl—l’,m—m',n—n’,s=0) (5)

’
,m',n'

where &1,m,»,52 1s the sum of the squares of the three com-
ponents of the vector K; 4,5 (i.€., a complex number).
Equation (5) may be regarded as an eigenvalue equation
where s, contained in %j,m,»,s%, is the eigenvalue and
Y2, m,n,s 1S the corresponding eigenvector. Obviously, the
complete solution of the problem consists of a superposi-
tion of the various eigenvectors, weighted by coefficients
which are determined by invoking the boundary condi-
tions. Many attempts®7? have been made to solve this
formidable problem. We will not try to solve it here.
Instead, we are considering what might be called the
“single-Bloch-wave approximation,” i.e., we are looking
for the dominant eigenvector and its eigenvalue.

B. Single-Bloch-Wave Approximation

Let us consider, for a moment, the case where W (r)
=10,0,0=const. Here, the solution is trivial. The wave
function in the crystal consists of a single plane wave
e*¥o-r whose propagation vector Ko= (K oz,K 0y,K 0.) sat-
isfies the following relations:

— (KoK o2+ Ko.2)+ K2+w0,0,0=0
(Schrédinger equation);
Im (K()z) <0
(boundary conditions);

ImK0x= Im(Koy)=O N
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Re(K,:)<0
(beam traveling in the negative z direction).

It follows immediately from the above that Im(wq,0,0)
>0. Furthermore, the ‘“eigenvalue” so may be com-
puted by setting Ko=K1,,mg,ng,s0°

so=Ko.—nop=— (K 2+w0,0,0)"2—n0p, (6)

where p is the reciprocal lattice constant in the z direc-
tion (in a cubic lattice, p=2x/a). In deriving (6) we
have assumed that lo=m=0, and #, is chosen such
that 0<Re(Ko,)—nop< p. Equation (6) may be split
into real and imaginary parts:
Re(so)=qo= (—1/V2)(K 24+ Re(wo,0,0)

+{[KLQ‘FRe(’wo,0,0)]2+Im(‘w0,0,0)2}1/2)1/2—%OP,
Im(30>Eto= (— 1/\/2)(—K12—R6(7Z)0,0,0)

+{[K 2+ Re(wo,0,0) P+Im(wo,0,0)%}12)! 2. (6")
We now make the assumption that s=s, even in the
case when W (r)# const.

The quantity s is therefore a fixed number and no

longer an eigenvalue parameter. Consequently, Egs.
(4) and (5) are rewritten as

Y= 2 ektmnnfy ., #)
l,m,n
¢l,m,n(K2_‘kl,m,n2)
+ Z wy .m',n"‘pl—l',m—m’,n—n’ =0 ) (SI)

U
where

kl,m,n=Kll+SO+27Tbl,m,n-

C. Boundary Conditions

The wave function (4') satisfies the first and second
boundary conditions (Sec. IIT) if Im(s¢)=1£,<0. It also
satisfies the third boundary condition if

> oelktmany, o =giKa LS piblmrd, (7
l,n

l,m,n

and
> Kymnrl)edtmnngy
l,m,n
=(K'12)6“('r+2 (hl,m lz)eihl,eri)l,m (8)
l,m

at the surface (2=0), where 1, is.a unit vector in the
% direction. Equations (7) and (8) may be decomposed
into a set of equations relating the coefficients of the
various harmonics in « and y:

Z l;[/Z,m,nzél,m,
2 ¥0,0,a=P0,0 1, 9)

Z (kl.m.n * lz)ﬂbl,m,n = (hl,m . lz)q)l,m y (l#O or m#O)

(%0 or m=0)

Z (k(),().n'lz)\bo,(),n:(h(],()'lz)(q)(],()_ 1)- (10)
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The &;,,’s may be eliminated from Egs. (9) and (10)
and we obtain

> [®ima—him) L Wima=0, (=0 or ms0)

(11)
Z [(k0,0,n_h0,0) ‘ 1z]¢0,0,n+2(h0,0' lz) =0.
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D. Numerical Solution

Let us assume that the sums appearing in Egs. (4'),
(5'), and (11) are truncated such that the numbers’ of
values of /, m, n retained are equal to L, M, N, respec-
tively. In this case, the number of equations contained
in (5) and (11) is L-M - (N+1), whereas the number
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of unknowns is L- M - N. The problem is overdetermined =~ where G has L, M, N columns and L, M, (N+7Z) rows,
because we are using a single Bloch wave to approxi- 1 is an L, M, IV dimensional vector containing the co-
mate the wave function in the crystal. Equations (5') efficients ¥, .0, and His an L, M, (N+1) dimensional

and (11) may be written as one single matrix equation ~ Vector. G and H are known. ) )
We now propose that an approximate solution of (12)

Gy=H, (12) may befound, according to the principle of least squares,

| T T T T T T

(0,0) BEAM

R | (1,1) BEAM

F16. 2. Calculated beam in-
tensities versus energy, showing
the dependence on the elastic
scattering cross section (scaling
- factor). Conditions: inner po-
tential Re(wo,0,0) = 10 V; imagi-
nary part of the potential
Im(wy,0,0) =2.5 V. The order of
the Bragg reflections is indi-
~ cated by N. .S and R designate
secondary Bragg and resonance
peaks.
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by minimizing the quantity mum is characterized by the conditions
S=(Gy—H) -D(Gy—H)*, 13 A aS
(G4—H)-D(G4—H) (13) =0, =0, (anyl, m,n) (14)
where D is a positive, real, diagonal matrix, containing OReY1,m,n AImy,m,n
suit'atble \.aveight'ing coe'fﬁcien'ts‘, and * indicates' Cqmplex or, equivalently, in matrix form,
conjugation. Since S is positive and quadratic in any
of the unknown, Re (¥1,m,») and Im(;,m,»), the mini- Py=Q, (15)
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where P is now a square matrix. Equation (15) is solved,
not by straightforward inversion of P, but by an itera-
tive technique that is not affected by round-off errors
during the computation. Clearly, the result depends on
the choice of D. However, in all cases that we have
studied, this dependence turns out to be quite weak,
because of the fact that the problem is only “slightly
overdetermined,” and, hence, there exists an “almost
exact” solution of Eq. (12). We have investigated the
influence of the relative magnitudes of the elements of D
on the final result and found it to be negligible. For all
our computations we therefore chose D=1 (unit matrix).

ENERGY , VOLTS

Obviously, once the vector 1 is known, the intensities
of the diffracted beams, i.e., |®; |2, are readily com-
puted from Egs. (9) and (10).

V. BEAM INTENSITY CALCULATIONS

Using the theory outlined above, calculations were
performed under the following conditions:

(1) A primary electron beam of unit intensity is inci-
dent normally on the (100) surface of an fcc lattice, with
lattice constant, ¢=4.04 A (aluminum).

(2) The crystal lattice is represented by a complex
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potential. The shape of its real part, i.e., the relative
magnitude of the expansion coefficients, i m,» [EQ.
(1)], is obtained by Fourier-analyzing the ‘self-con-
sistent” aluminum potential given in Ref. 8. The expan-
sion includes all terms for which 2+4m?+#2<4, and the
imaginary part of the potential is assumed independent
of position and electron energy.

(3) The crystal surface, where the potential abruptly
drops to zero, lies half-way between two layers of atoms.

(4) The wave function in the crystal is approximated
by a single Bloch wave whose expansion is truncated
such that 24m2+n2 < 34.

Figure 1 illustrates the dependence of the beam-in-
tensity-versus-energy curves on the assumed inner po-
tential (Rewy,o,0). Decreasing the inner potential by 2.5
V translates the curves to a commensurate, higher
energy.

Figure 2 shows the dependence of the beam intensities
on the magnitude of the oscillatory part of the potential,
i.e., on the elastic scattering cross section. The latter
quantity is varied by introducing a scaling factor which
multiplies all coefficients w;,,,», €xcept wo,0,0. For small
cross sections, only the ordinary Bragg peaks are pres-
ent. As the cross section is made larger, secondary Bragg
peaks and resonance phenomena, due to multiple-scat-
tering effects, appear.

Figure 3 demonstrates the dependence of the intensity
curves on the magnitude of the imaginary potential, i.e.,
on the inelastic scattering cross section. As the imagi-
nary potential decreases, the amount of “structure”
(peak-to-valley ratios) increases considerably. This be-
havior is to be expected. A decrease in the inelastic scat-
tering enhances the penetration of the primary beam
and, therefore, enhances all three-dimensional effects.
Clearly, the very existence of Bragg peaks or structure
is a three-dimensional effect par excellence. The disap-

pearance of the secondary Bragg peaks for large values -

of the imaginary potential, as seen in Fig. 3., indicates
that these peaks may be attributed to multiple-scatter-
ing events involving atoms in different layers, rather
than atoms in a single layer.
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VI. COMPARISON WITH EXPERIMENT

Beam intensity measurements on the (100) surface
of aluminum single crystals are being performed by
Bedair at our laboratory. Figure 4 compares his mea-
surements!? with a typical set of our theoretical curves.
All three experimental curves are normalized to the
same primary electron beam current. Intensity ratios
between different beams are, therefore, represented
correctly.

When considering this comparison between theory
and experiment (Fig. 4.), the following points should be
borne in mind:

(1) No attempt has been made to optimize the param-
eters of the potential, i.e., the expansion coefficients
Wi, m,ne

(2) The imaginary part of the potential has been as-
sumed constant, whereas it should vary with electron
energy in order to represent the known variation of in-
elastic scattering cross sections with energy.

(3) The theoretical results reported here are based on
a single-Bloch-function representation. It remains to be
investigated whether this is a good approximation, or
whether there are cases where a more rigorous multi-
Bloch-function treatment must be used.

A thorough parameter optimization, along the lines
indicated above, might improve the agreement between
theory and experiment considerably. This would, how-
ever, represent a very large investment in computer
time.

VII. CONCLUSIONS

We have shown that an extended Bethe theory may
be applied successfully to the computation of LEED in-
tensities. The results are in reasonable agreement with
measured'? beam intensities (Fig. 4.), although we have
used a single-Bloch-function approximation in order to
avoid an excessively lengthy calculation, and although
there are at least two limitations inherent in our model
which have to be seriously questioned.® These are the
use of an incident plane wave and the assumed perfect
periodicity with abrupt cutoff at the crystal surface.



